Low-Rank Matrix Recovery Approach for Clutter Rejection in Real-Time IR-UWB Radar-Based Moving Target Detection
نویسندگان
چکیده
The detection of a moving target using an IR-UWB Radar involves the core task of separating the waves reflected by the static background and by the moving target. This paper investigates the capacity of the low-rank and sparse matrix decomposition approach to separate the background and the foreground in the trend of UWB Radar-based moving target detection. Robust PCA models are criticized for being batched-data-oriented, which makes them inconvenient in realistic environments where frames need to be processed as they are recorded in real time. In this paper, a novel method based on overlapping-windows processing is proposed to cope with online processing. The method consists of processing a small batch of frames which will be continually updated without changing its size as new frames are captured. We prove that RPCA (via its Inexact Augmented Lagrange Multiplier (IALM) model) can successfully separate the two subspaces, which enhances the accuracy of target detection. The overlapping-windows processing method converges on the optimal solution with its batch counterpart (i.e., processing batched data with RPCA), and both methods prove the robustness and efficiency of the RPCA over the classic PCA and the commonly used exponential averaging method.
منابع مشابه
Location Detection and Tracking of Moving Targets by a 2D IR-UWB Radar System
In indoor environments, the Global Positioning System (GPS) and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB) technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact siz...
متن کاملManoeuvring target detection in over-the-horizon radar using adaptive clutter rejection and adaptive chirplet transform
In over-the-horizon radar (OTHR) systems, the signal-to-clutter ratio (SCR) used for moving target detection is very low. For slowly moving targets such as ships, the SCR is typically from 250 dB to 260 dB and their Doppler frequencies are close to that of the clutter. For manoeuvring targets, such as aircraft and missiles, the Doppler frequencies are time-varying when a long integration time i...
متن کاملEffect of Curved Path Monopulse Radar Platform’s Grazing Angle on Height of Floated Targets Detection
Monopulse radarsare one of the most accurate tracking radars used to guide various platforms. Detection and tracking of surface targets with these radars are performed in order to point strike targets. Sea clutter presents challenges for detecting floated targets and in addition to affecting detection height, it can cause errors in monopulse angle finding. In this paper, the airborne monopulse ...
متن کاملSelf-Training Algorithms for Ultra-wideband Radar Target Detection
An ultra-wideband (UWB) synthetic aperture radar (SAR) simulation technique that employs physical and statistical models is developed and presented. This joint physics/statistics based technique generates images that have many of the “blob-like” and “spiky” clutter characteristics of UWB radar data in forested regions while avoiding the intensive computations required for the implementation of ...
متن کاملAdaptation of Rejection Algorithms for a Radar Clutter
In this paper, the algorithms for adaptive rejection of a radar clutter are synthesized for the case of a priori unknown spectral-correlation characteristics at wobbulation of a repetition period of the radar signal. The synthesis of algorithms for the non-recursive adaptive rejection filter (ARF) of a given order is reduced to determination of the vector of weighting coefficients, which realiz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 16 شماره
صفحات -
تاریخ انتشار 2016